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Effective interactions between inclusions in complex fluids driven out of equilibrium
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The concept of fluctuation-induced effective interactions is extended to systems driven out of equilibrium.
We compute the forces experienced by macroscopic objects immersed in a soft material driven by external
shaking sources. We show that, in contrast with equilibrium Casimir forces induced by thermal fluctuations,
their sign, range, and amplitude depend on specifics of the shaking and can thus be tuned. We also comment
on the dispersion of these shaking-induced forces, and discuss their potential application to phase ordering in
soft materials.
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. INTRODUCTION field ¢ living in a d-dimensional spaced=1,2,3): for in-
stance,¢ could represent the height profile of a fluid inter-
A prominent issue in soft condensed matter physics is th@gce d=2) or a contact line d=1) [15], or the angular
understanding of the equilibrium phase behavior of mesosdeviation of the director of a nematic liquid crystal= 3)
copic particles immersed in complex fluids: colloidal suspen{16]. (i) The external objects are two identical rigid parallel
sions [1], liquid droplets in liquid crystald2], inclusions plates that enforce a zero field on their surfat@sichlet
in lipid membranes[3], charged particles in electrolytes houndary conditions Among the numerous possible choices
[4], ... . Astandard and fruitful procedure to describe thefor the shaking sources, we explore three different cases of
large scale properties of inclusions in a soft medium consistexperimental relevancéf. Fig. 1): (A) a localized mono-
in integrating out the numerous “solvent” degrees of free-chromatic shaking(B) an uniform monochromatic shaking,
dom via ensemble averagin@,5]. The interaction between (C) a spatially uncorrelated colored noise. All these shaking
the embedded particles is then described by “effective poinduce effective interactions between the plates, which we
tentials.” The latter can modify the genuine interparticlescharacterize in Sec. Il by the corresponding average forces,
interaction (Coulomb, van der Waals..) or give rise to  discussing their sign, amplitude and range. We compare
entirely new effects. For instance, in sonfequilibrium)  these features with those of the usual thermal Casimir effect.
cases, the external objects do not modify the ground statghe detail of the calculations and a more thorough analysis
energy of the medium but only alter its thermal-fluctuationsof the shaking-induced interactions are gathered in Sec. IV.
spectrum. The resulting entropic effective interaction hasThis more technical section also includes some comments on
consequently an amplitude proportional to the thermal enthe time dependence and fluctuations of these shaking-
ergy kgT and a range comparable to that of the correlations
of the fluctuations of the mediurf7,6]. Such fluctuation-
induced(i.e., entropig¢ interactions are commonly referred to
as thermal Casimir interactions in analogy with their famous A I
qguantum equivaler3]. .
More recently, many experimental studies have reported
the organization of particles embedded in fluids when the
latter are driven out of equilibrium by the application of
external fieldd9—12. Extensions of the concepts of “effec-
tive potential” and “entropic forces” to out of equilibrium B I I I I I I I I I I I
situations have been scard®-14. Indeed effective poten-
tials cannot be simply derived from a free energy in an out-
of-equilibrium context, and only the instantaneous force act-
ing on the external objects for a given configuration of the
medium can be defined. The effective interactions between
the host objects should then strongly depend on the dynamics C t l 1 N f l T I t l t
ruling the temporal evolution of the mediu(imn contrast to
the equilibrium Casimir cage
In this paper, we attempt to extend the paradigm of Ca-
simir effective interactions to objects immersed in soft sys-
tems “shaken” by external energy sources that cannoabe  FIG. 1. Sketch of the three shaking processes discussed in the
priori modeled by heat baths. We use a model, detailed ipaper:(A) pointlike monochromatic shaking sourod) uniform
Sec. I, where both the medium and the objects are verynonochromatic shaking, antC) spatially uncorrelated colored
simple.(i) The hosting medium is described by a scalar freenoise.
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K K
F=- Ef dr[0x¢(0+,r)]2+§f dr[a,¢(07,r) 1% (3)
F<| F~
— | fe— B. Dynamics
0 L For the sake of clarity all calculations are performed
x I - within the simplest local and strongly dissipative dynamical
i scheme: thep field evolves under the application of an ex-
BN r ternal “shaking” sourcey as
oH 2
imim i i =] > yorp=————+n=kVp+ 7, (4)
L o0

¢(0r,t)=e¢(L,r,t)=0. 5)
FIG. 2. Two parallel plates, perpendicular to thexis, sepa-
rated by a distanck shorter than their lateral extensitn. Here y is a generalized friction coefficient.

A description of the dynamics of the plates is beyond the
induced forces. Section V ends the paper with a synthetigcope of this paper, and we assume that they are flxésl.
summary of our main results and an outlook on possiblehus a constant. After partial Fourier transform with respect
applications. to t andr, Egs.(4) and(5) can be recast into

L
Il. MODEL AND NOTATIONS Bog(X)= fo dX'Ri,q(X,X')ﬂw,q(X'), (6)
A. Energetics and force on the plates

~We consider two plates in a soft medium separated by here the response functidR ~ corresponds to the diffu-
distanceL much shorter than their lateral extensibp, as  sion kernel in the slab geometry with DBC and with a

depicted in Fig. 2. Their thickness plays no role in all thatdiffusion constant/y. The Fourier transforms used in this
follows and will be set to 0. The soft medium is modeled bypaper are defined byfqudrf(r)exp@q. r) and Jo

a scalar field$ associated with the elastic Hamiltonian = [dtg(t)exp(wt).
A generalization of our results obtained with E¢%). and
H= ff d9R[V ¢(R)]?, (1) (5 to other slow dynamics that obey an equation of f@fn
2 with a different kernel will be commented on throughout the

text. This generalization is simple provided the dynamic lin-
ear response ap relates spatial and temporal scales through
an algebraic relatioh,~ »~*?, wherel,, is the spatial ex-
tension of the elastic distortion resulting from a localized
periodic shaking of pulsatiom, andz is the so-called dy-
namical exponent. The diffusive model described above by
Egs.(4) and(5) indeed fits in this picture witz=2 and

with « the elastic modulus anﬁz(x,r) wherex is the co-
ordinate normal to the plate, see Fig. 2.is taken dimen-
sionless.

We restrict ourselves to strong plate-field interactions,
modeled by Dirichlet boundary condition®BC) on the
plates:p(x=0yr)=¢(x=L,r)=0.

We first focus our attention on the forée™ that the soft 1
medium exerts on the right-hand side of the plate located at l,=[(v/ )] = @)
x=0. For a given configuration of the elastic field; is

given by the integral over of the stress tensor component |, AVERAGE FORCES INDUCED BY THREE KINDS OF

Tu(r) [20]. The components;; of this stress tensor can be SHAKING

obtained by the virtual displacement method taking into ac-

count the DBC[6]. In the present geometryT,,(r) To set a reference for further comparison, we first recall
=—1k[d.¢(0",r)]?, so that the expression of the average thermal foFeggimir ON the

plate atx=0 if the whole medium is thermally excited by a
heat bath imposing a temperatur¢22]. The simplest deri-
F~>=— ff dr[d,¢(07,r)]% (2)  vation consists in computing the total free energy of the sys-
2 tem for a given interplate distante and taking its derivative
with respect toL. An alternative approach is to consider the
Note that this force pushes the plate toward the negative model Langevin dynamics for the field given by E¢$.and
direction whatever the field conformation. (5), with 7 a thermal Gaussian white noise of zero mean and
The net forceF on the plate is the algebraic sum of the of variance (7(R,t) 7(R’,t'))=2ykgTS(R—R’) 8(t—t').
contributions of the two side&=F~+F~. The forceF~is  Averaging over realizations of the noise leads to the same
given by a formula similar to Eq2), so that universal expression for the net thermal Casimir fdigke
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Ld-t 0T T T T T T T T
F casimir= AdkBTIH__d ) (8)
1™ _ ..... . _
with Ag=(d—1)I(d/2)¢(d)/(47)%2. This universal mean P

force describes a long range attraction that depends on the 1077 ™ N

temperature of the heat bath but not on specific material 3 3

properties such as andvy. 10 \
We now calculate the average forces generated by the 4 N
three nonthermal shaking processes mentioned in the intro- 101 \t:\.\' N
duction, with a fieldg that evolves according to Eqgl) and i = \’«.\ ]
(5).
10 L1 1 1 1 1 1 T\\I\
A. Average force induced by a localized monochromatic 0O 1 2 3 4 5 6 7 8 9 10

shakin
g FIG. 3. Localized monochromatic shakingog-linear plot of

We start with the simplest choice for the shaking in Eq.the scaling functionY 5(1/2L/1,) againstL/l, = (y/x)Y2wlA,
(4), namely, a pointlike monochromatic shaker oscillating atfor various space dimensions=3 full line, d=2 dashed line, and
a pulsationwg, located at an equal distant& from the two  g=1 dotted line.
plates:

- g the shaking period. In contrast, the dynamic length is much
7(R,t) = na“cog wd) o(x—L12) &(r), (9 smaller than the plate-shaker distanceff, >1. The elas-

The noise amplitude has been arbitrarilv solit into the rod-tic deformations are exponentially screened before reaching
mp . d ysp the Prodine plate surfaces. Therefore, the force amplitude decays ex-
uct of a microscopic volume&®, where the medium is

) . . . ponentially, as shown in Fig. 3.
z?]a:r?gr'g";ngei:::?kmg amplituggthat has the dimension of In summary, a localized periodic shaking induces an ef-

fective interplate interaction. AlthoughR c,simir IS Universal
S.UCh a process cou_ld“be,_ foz example, the result of th%md leads to an attraction between the two plates, the inter-
forcing of a microscopic “active” particle located between

the two platese.q., a magnetic particle under the inﬂuenceaction obtained here is repulsive and does depend both on
P 9., a mag partt X ) the elastic modulus of the surrounding“fluid” and on its dy-
of an external oscillating magnetic figJdn which casea is

. ; namics(throughlws). Finally, both the range and the ampli-
typically fixed, whereasys and wg can be externally tuned. e
The net forceF felt by the plate a=0 reduces to its tude of the present shaking-induced force can be externally

right hand side contributioff~ since the outer medium re- tuned by_ varying the pulsation; and the amplitudey; of
mains undistortefi¢(x<0)=0]. Moreover, the geometry is € shaking. The dependence of the force on the shaker po-
here totally symmetrical so that the force felt by the plate aSition as well as its fluctuations will be discussed in Sec. IV.
x=L is —F. DenotingF the time averaged force for this

process and anticipating on the detailed discussion of Sec. B.Average force induced by a uniform monochromatic

IV A, we use Eq.(23) to write shaking
We now suppose that the elastic medium is everywhere
- (pah? 1 1L periodically and homogeneously shaken:
Fa=— —Yal 5| (10
k41 2 st

7(R,t) = ncog wd). (11)

Againl, =[(v/x)ws] 1/2_'5 the dynamical length associated pqgipje experimental realizations include the homogeneous

with the shaking pulsatioms. The adimensional function and periodic shaking of a metallic elastic line using a mag-

Ya(1/2L11,,) is plotted in Fig. 3, and its general expressionnetic field [17] or the driving of an interface between two

(including the shaker position dependenisegiven below in  dielectric liquids using ac electric field48]. One may also

Eq. (23). use flexoelectric effects in liquid crystal to generate such a
Two different limit regimes can be identified: If/l,,  shaking procesgl9]. By symmetry the two plates feel oppo-

<1, the shaking period is much larger than the relaxation ofite instantaneous forces. The exact expression for the time

any interplate field excitation, so that the elastic deformaaveraged forc&g on thex=0 plate is computed in Sec. IV:

tions generated at= L /2 propagate along theaxis up to the o 41

plate surfaces. In this quasistatic limit, the time averaged F :ﬂsLn 12y L (12)

forceF 5 felt by the plate ak=0 is comparable to the elastic B k @ Bl |

force on the plates under the application of a constant static

“effective” perturbation 1/\/§n5ad5(x—L/2)5(r). The lat-  The dimensionless quantityg, see Eq.(30), is plotted in

ter induces static deformations of lateral extendioon the  Fig. 4: it is nonmonotonic and changes sign periodically.

plate. Thus,F, scales asniaZdI(KLd‘l), independent of Given the plates geometry and the shaking translational in-

S
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FIG. 4. Uniform monochromatic shakind-inear plot of the FIG. 5. Colored noise Log-log plot of the ratioY ¢(L/1o)/Aq
scaling functionY g(L/I,,) as a function oL/, =(y/x)"w?.  ys L/l =(¥/x)"*Q"L. The full line corresponds ta=3, the

dashed line correspondsde- 2, and the dotted line corresponds to
variance, the net normal streE@/Lﬁ”l depends neither on d=1.
the plates lateral extensidny nor on the dimensiowl. The
fast and slow shaking asymptotics can thus be qualitativelgeeking for the influence of its color on the interplate force
inferred from dimensional analysis. If the medium is slowly generated. We describe the fluctuations of this noise by
shaken [/l ,<1), the net force amplitude diverges Eﬁz - _ - .
~1/ws. First, notice that a constant uniform sourgeg be- (7(RY7(R',t'))=nsa"S(t—t")8(R-R"), (13
tween the plates induces an homogenous normal stress on the ) ) ] _ )
inner side of the platex=0") that scales necessarily as where the correlatio®(t) is defllned by its Fourier transform
FB>/|—|?71~ »2k L2, Second, on the left-hand side of the S,,, also referred to as the noise power spectrum:

plate x<0), st is the only length scale available to con-
struct the normal stresBg/Lf ™'~ 75«12 . In this slow
w

shaking regime this latter contribution dominates, so Wt Qi+ w?
plateaus to a finite value. Turning now to théd ,>1 limit,

if the interplate distance goes to infinity, the two sides of theln Eq. (13) a is a microscopic distance chosen so that the
plate face identical semi-infinite media. Consequently, theynean squared noise satisfi(e@z(li,t))= 775- Again 7 has
are pushed in opposite directions with the same amplitudéhe dimension of an energy density. The white noise limit
and thus feel on average no net force. So, in this limlf,  corresponds t§)—c, with n2aQ ' kept constant.

>1 that also corresponds to fast shaking at fikedr g de- The mean net forcE ¢ on thex=0 plate is exactly com-
cays to zero, as observed in Fig. 4. puted in Sec. IV C:

Returning to the most remarkable features, Fig. 4 and Eq.
(12) show that the fluctuations of a uniformally shaken me- 2,0 | d-1 L
dium induce effective interplate forces that strongly differ Fe= s I Yc( _)
from Fcasimir- They are indeed completely tunable unlike K 972 lo
their equilibrium analog. Their sign, amplitude, and range
can all be controlled externally by varying the shaking periodThe dimensionless rati /A is plotted in Fig. 5, using Eq.

Qs
(14

(15

S,

and amplitude. (33). We recall thay measures the amplitude of the thermal
Casimir force[ Aq=(d—1)T'(d/2)£(d)/(47)%2].
C. Average force induced by a stochastic shaking: Postponing a more involved discussion to the following
colored noise section, we emphasize here three points. First, the color of

OIhe noise has no influence on the sign of the force: the two

Finally the case of StOChfisft'C shaklr_lg Sources 1s consi plates attract each other whatev@t and 7. Second,Y ¢
ered. As mentioned above, if is the white Langevin noise ; . .
decreases monotonically with/lo, in other words the

modeling the coupling to a heat bath, the resulting field fluc- . S
tuations induce thermal Casimir interactions between théarger the noise correlation tinfeg -, the stronger the force
plates. Any other noisy shaking drives the system out ofelt by the two plates. Third, Fig. 5 indicates thag(u)/Aq
equilibrium. Numerous examples of elastic materials shakedlecays as 1/(@) whenus1. This implies that the attrac-
by “active” stochastic processes are provided by biologicaltion is long ranged and decays only algebraically with the
systems, e.g., active membraf&$], actin-myosin gel§21],  interplate distance. A connection with the Casimir result ap-
etc. Without attempting to describe accurately the specificears in this regime: if one seg€a’Q;*=2ykgT, then in

of the noise in a given system, we focus here on the simpléghe white noise limitQQ.—«, F- converges as expected to
case of a spatially uncorrelated colored noise of zero meark, cagimi= AdkBTLﬁ’llLd.
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SR (OX') sinf \(qL)2+i(L/1,)%(1-x"/L)]
X = .
RO ke sint{ QL) 2+ 1(LI1,)2]

: z (18

| | L |
E i i A simpler calculation can be carried out if the source is in
! ! ! the negativex region (x'<0). In this case the only image
source is symmetric in the=0 plane of the original source,
so that the response of the field gradient onxXke ™~ side of

the plate is described by

FIG. 6. Distribution of the image sources for the two plates
geometry and Dirichlet boundary conditions. The filled circle is the
original source and the dashed circles are its mirror images.

- : e~ V(@) +i(x'11,)?

To conclude, we have shown that Casimir-like attractions RS (0X')= _ (19)
can be induced by colored noisy shaking. These attractions Xreah K
decay algebraically at long distance as in the thermal case

and contrary to the two former monochromatic cases. Their A. Localized periodic shaking
amplitudes depend explicitly on the material properties and L ) .
their scaling on the noise color. If the only driving is a single monochromatic shaker lo-

cated between the platesat Xq,
IV. SHAKING-INDUCED FORCES: DETAILED ANALYSIS 7= 1a%8(x—xg) 8(r)cog wd), (20

_In this section we provide a more detailed analysis of th&hen the general expression of the net force acting onxthe
interactions induced by the three kinds of shakings: in addi— g plate is simply obtained from the definition of the re-
tion to the explicit derivation of the average of the COIe-gponse functiow, R

sponding forces, we also comment on their temporal fluctua-

tions. — k(na’)? > 2
We start with the derivation of the tool that will allow us  F(t)= —————| | [0xR;,_q(0x9)|*|[1+cod2 wd)],
to compute the forces on the=0 plate in all situations, a 21)

namely, the linear response functiogR of the field’s gra-
dient at the surface of the plate to a pointlike shaker in theyith the short-hand notatioﬁqudq/(2w)d‘1 [24].

medium[by definition, the kernelR is the solution of the There is obviously no force on the left side of the plate, so
dynamic Egs.(4) and (5), with 7(R,t)=86(R—R’")(t that using(18) we obtain the exact expression for the instan-
—t')]. We compute this quantity using an image method,taneous force on this plate. Its time averdge describes a
which conveys an intuitive picturg23]: as in electrostatics, repulsion between the plates:

these equations can be solved replacing the constraint at

boundarieg5) by the addition of arad hocdistribution of -  (ma®? [xs L

image sources outside the integration domain. Fa(Xs,09)=— eLd-t AL, (22
We consider first a shaking source located in the interplate s

region 0<x’<L and compute the responggR ~ on thex  ith

=0" side of the plate. In the present slab geometry, the

images are the mirror images of the original source through 1 sint[\/m(l—u)]‘z

virtual reflecting planes located a&nL, as depicted in Fig. Ya(u,v)= Zf - — . (23

6. Consequently, the respon&e;, ,(x,x) can be expressed af  sinh(yg“+iv®) ‘

as an infinite sum over all the image contributions: . : .
We now give a closer look at the asymptotics corresponding

to the fast and slow shaking limits.
Ry q(XX')= > R, (2nL+x" —x) Quasistatic shakingWe first consider the regime where
’ nez the driving period is much larger than the relaxation time of
any interplate field deformation, i.e., the dynamical length is
— zz R q(2nL—x"—X), (169  much larger than the interplate distandg/l(, <1).
ne

The limiting valueY 5(u,0) can be exactly computed by
integrating over the in-plang modes before summing up all

whereR the diffusion kernel in an infinite domain: the contributions from all images in Eq$l6) and (21).
If d=3 Y a(u,0)=4,[ m(1—u)cot(mu)—2"u+2(1—u)y{u) |/
exp(— Va2 +il 2 x—x'|) (327), with  the Eulerys function, andl” the Euler constant
Ry q(X,X")= K~V — |_ | , a7 [25], if d=2, Ya(u,0)=[1+ #(1—u)cot(mu)]/(8m), and
2kNg+il, if d=1, Ya(u,0=(1—u)?4. The scaling function

Y a(Xs/L,0) is plotted in Fig. ®log-log ploY. The fast decay
with \J—1=i. Performing sunf16) and taking the derivative for values ofx,/L larger than3 witnesses that the elastic
with respect tox yields distortions are essentially occurring in thE2<x<L region.
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FIG. 7. Log-log plot of the scaling functio’Y (Xs/L,0) vs FIG. 8. Log-linear plot of the scaling function, . The full line
Xs/L. This corresponds to cask in the quasistatic limitL/l,, corresponds td=3, the dashed line td=2, and the dotted line to
<1. The full line corresponds td= 3, the dashed one corresponds d=1.
to d=2, and the dotted line correspondsde 1.

Conversely, a shaker close te=0 induces strong variations With Y a(u)=7fqlexp(—yg*+iu?)|% This dimensionless

of the elastic field in the vicinity of the plate, leading to an screening factor is plotted in Fig. 8. If the dynamic lenfyth

algebraic divergence of the force wheg/L—0 (if d>1). is larger than the distance separating the shaking source from
The force dependence on the shaker position can also hge plate,x,/I,,>1, the amplitude of the elastic field exci-

qualitatively understood, thanks to an electrostatic analogyions are exponentially reduced before reaching the plate’s
In the present quasistatic limit, the kerrVéIwS corresponds ¢ face. More precisely, in this regime,

to the inverse of the Laplace operat@vith DBC on the
plateg. Consequentlyg plays the role of an electrostatic
potential, the plates mimic a grounded planar capacitance,
and the shaking source a point-like particle bearing a charge
7% The force on the plate is then analogous to the eleCOppositer,YA(xS/st) has a nonvanishing finite limit if
trostatic force produced by a pointlike chaf@8]. From the S .
image expansiof6) we know that this force is identical to xS/IwS goes to zeroF, then corresponds to the electrostatic
that produced on a virtual plane et 0 by an infinite num-  force acting on a conducting plate facing a single “effective”
ber of (+#7a" charges located ak=2nL+xs and of chargena located at k=x,r =0), so that, as in the quasi-
(— na%) charges ax=2nL—x,. Hence we have the fol- static case abov&im—(nsad)zl(xxg‘l).
lowing conclusions. Fluctuations of the shaking-induced forcBeyond the

(1) If x<L (cf. Fig. 6): the electric field on the plate definition and the characterization of the average interplate
surface is dominated by the image chargegxftx,, so interaction, it is crucial to notice that the present shaking-

induced force is a time varying quantity. Rewriting Eg1)

F~—(773ad)2/(;<xg_1). Higher-order reflections produce

image sources that form dipoles viewed from#0. Their  asF(t)=Fx[1+cos(2u4)], it is obvious that the force ex-

subdominant contributions to the electrostatic force actuallyerienced by the immersed plates cannoalpgiori reduced

reduce the above estimation. This implies that the further th#o its sole average value. As a matter of fact the fluctuations

second plate, the bigger the force produced by a singlef the instantaneous force are comparable to its average am-

shaker. plitude.
(2) If xs~L (cf. Fig. 6): the image charges form dipoles

located atx=(2n+1)L. The electric field on the plate is

dominated by the influence of the dipole located»dt=L

(the closest from th&=0 plate. The force therefore scales ~ We now consider that the soft medium is uniformally

Fa~—(7a%2(1—xs/L)(kL971). shaken byn(R,t) = 7Loswd). 7 is the superposition of in-
Fast shakinglf L/I,, <1, the electrostatic analogy only phase shakers of theA— type uniformally distributed in

provides a partial description of the force generation. In thissPace. All the elementary shakers produce periodic elastic

case, only the first reflexion contribute substantially to thedeformations that *interfere” and give rise fo the instanta-

image expansiori16) as if the second platéat x=L) was neous forces=~(t) [respectivelyF ~(t)] at x=0" (respec-

pushed to infinity. The only remaining length scales gye {ively x=07) obtained from Eqs(2) and(6):

andlms, and the average force can be approximated by

Y a(u)~(u)@Dexp — \2u). (25)

B. Homogenous monochromatic shaking

2

K - - ’ !
Frt)=—ZLi" fo IR 5 o OX)dx

(na%)?

Fa~— a1 YaXs/l,), (24)
KXg

X[1+cog2wd+67)], (26)
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with 7 =2 arg[fb&ijgo(O,x’)dx’], and eraged net forc& - experienced by the plate a&=0 is the
sum of the mean values of the two independent fofeés

K ® 2 andF <. Using Eqgs.(12),(18),(20) this force is written as
F<(t):ZLﬁ71J‘ &XRi O(O,X,)dX, g Eq ( )( )( )
0 s’

l
X[1+cog 2w+ 67)], (27) Fe=—g fwsw[ fO[FZ(X.wHFE(—X.w)]dX
with ==2 ard [, R is’O(O,X’)dX']. At every instant these w
two forces compete. They push the plate in opposite direc- + jl_ Fa(=X w)dx|. (3D
tions to give rise to the net forde(t). The latter is exactly
computed using Eq¢3), (18), (19), (26), and(27), and after Exact results For a Lorentzian power spectrum, see Eq.
some elementary algebfa4]: (14), the integration over frequency and position of all the
elementary contributionB (X, w) in Eq. (31) yields
F(t)=F [1+ cod2od) ] 29)
=rB RN R 2.dy d-1
cog§L/(v2l, nsa’L L
§L/(V2 )] FC:%YC(I_), (32)
L kL Qg
The averagd-g is given by
2) d-1 1
nel L - —
Fo= s KH lisYB(C)’ (29) Y (u) 4uzqu(cothq 1)
1
1 cogu/+2) - —Zf JaZ+uf coth( o2+ u?)—1]. (33
Yg(u)=5 . (30 4ucJq
2 coqu/+/2)+coshu/\2)

. . . ) . The scaling functionY ¢ is plotted in Fig. 5. To achieve
The functionYg is plotted in Sec. llI B, see Fig. 4, where its iha exact computation df, the integral over the in-plate

fast and slow asymptotics are qualitatively studied. q modes in Eq.(33) is performed. After some algebra
Mean force tunability. The tunability of the present o optain. if d=1 Ye={1—u[cothQ)— 1] if

shaking-induced force is clearly revealed by E(8) and _ _ et o Doy

(30). _Precisely fo_r fixedL (i) the shaking _pulsatiom)s sets ?48ih2)?[$vh§§(§3i)s tze I:Sigmalrilr%glgtljn(izicz:itg(& 2&2

the sign ofF g to S|gr[cos{L/(\/§I ws)]}’ and its range t&lws dilogarithm function, Li(x)=2f:1xk/k2. Finally for the

[via the cosh term in Eq29)], (i) then 75 allows to adjust  §—2 caseY =25, [Ko(2nu) +K,(2nu)], whereK,, is the

the mean force amplitude arbitrarily. This second assertion i§i K-Bessel functior[ 25].

actually true only ifL# 7/ \2(2n+1)I,,, with n integer. In Notice that this last calculation can actually be bypassed,

such cases the plates experience no mean net force. if one already knows the thermal Casimir force the left
Fluctuations of the shaking-induced fordégquation(28) plate would feel if the soft medium had a finite correlation

indicates actually thaf (t) “fluctuates” periodically around length &, precisely if the elastic Hamiltonian were

Fg with a pulsation 2. Moreover, the amplitude of the /= («/2)[[V (R)]?+[ ¢(R)/£]?d°R. Denoting this force
2w components of the force is 1/c{dn$(lws\/§)] times larger Feasmi(L/€), We can show that Eq¢32) and (33) can be
than its mean valuEg, whatever the shaking parameters  recast into[27]
and 7.

Shaking-induced organizatioithe two preceeding com- n2alQ [ - L
ments strongly suggest that the homogenous shaking may be FCZW{ Fcasimif 0) — FCasimi( E) } (34
used to dynamically induce spacial “localization” of the s
plates. As a matter of fact, when mesoscopic objects are im- ~ o
mersed in a soft medium, their intrinsic dynamiignored in ~ WNere Fcasimi(0), of course, corresponds to the Casimir
the present worknecessarily filters out high frequency ef- fqrce the plate experiences in a scale-free fluctuating me-
fects of external forcing. If their response time is much largediUm, cf. EQ.(8). ,
than 1/(2v9), these “slow” moving objects only respond to Qualltatwe approach Equation(31) shows clearly 'that
the stationary componeffits of the shaking-induced force. Fcis the result of the incoherent sum over frequencies and
The corresponding steady-state interplate distance in thRositions of the forces produced by localized shakers of the

; ; : —A- type. Note that the sum over the shaking frequencies is
resent simple geometry is then controllable by tuning
P ped y y weighted by the noise power spectr8y. This decomposi-

tion is now used to justify first the sign of the mean force,

then the algebraic decays of the mean force as observed in
The medium surrounding the plates is now supposed to bEg. (32) and Fig. 5.

driven by stochastic shaking sources with zero mean and Only the elementary monochromatic shakers localized at

mean-squared fluctuations given by Ej3). The noise av- distancesx|<L on the left-hand side of the plate have a

C. Colored noisy shaking
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challenger in the &x<L inner region. Referring to the dis- L\ G-dz
cussion in Sec. IVA, we know thaF,>0 and that . L\ -1y _IQ if L/IQS<1
[F A (X, 0)|<|FA(—X,0)|. Moreover, S, is necessarily a L | s (36)
e ! . AF L I (d+1)/2
positive quantity for all frequencies. It then turns out that the Q .
. " ; _ if L/lg>1,
net mean force is positive, for any choice &, the L s

two objects attract each other. Besides, (X, o)
~—Fx(—x,0) for shaker located at<L/2. This important

property leads to the cancellation of the short-distance diverd/® have also assumefd>1, since the one-dimensional case
gences in the first term of Eq31). Finally, |Fx (x,)| deserve a more careful analysis as in the equilibrium context
. 3 A ’

. . more carefully studied in Ref27]. The above expressions
<|Fax(—x,w)] if |[x|>L/2, so that Eq(31) can be approxi- e .
mated byFC~2Lﬁ‘la‘dfw8wf°[/2F,§(—x,w)dx. show that the present shaking-induced force cannat |-

oo ; ori reduced to its sole valuE.. Indeed, depending on the
To sum up, the elastic field deformaﬂon:s produced by thE‘geometrical aspect ratib| /L and on the noise correlation
—A— type shakers located a< —L/2 dominate the mean

time Q5! the variance of the force can dominate its mean
net forceFc.

Without refering to any specific choice f&;,, the noise value by orders of magnitude.
power spectrum is here characterized only by its width
see, e.g., Eq(13). Thus, going to thex,l,) variables and D. Toward more complex dynamics

> =8 B .
definingL* =max(.lo) we easily deduce To what extent do the results presented above apply to

systems evolving according to more complex dynamics? It is

noticeable that only the explicit form of the scaling functions
(35 Yy requires a precise description of the field dynamics. Con-
versely, all the qualitative analysis as well as the asymptotic
expressions for the various forces involve only the definition
of the dynamical length,, . We thus expect that they should
be extendable to any other dynamic scheme relating algebra-
ically the spatial and the temporal relaxation scale.

n2a’Q LTt = dl, (1 dx
c 13
L* | L

Ty a1’

sinceFx (x,w) is exponentially weak ik>1, and scales as
1xd-tif x<I,, cf. Fig. 8.
We can now integraté35) and distinguish the two cases.
(i) LNg>1. In this wide noise spectrum limiFc

~(5Za%Q 1y)Lf LY, the thermal Casimir force scaling
is obtained as anticipated in Sec. III. To summarize, a simple model has allowed us to show

(i) L/IQS<1. In this case the noise correlation time that the concept of fluctuation-induced interactions can be
~Q;1 is larger than the field relaxation over distances€Xtended to complex fluids driven to out of equilibrium. Our

smaller tharL. The number of elementary shakers contribut-Main result concerns identical platelike inclusions immersed

ing to the force is substantially increased compared td" @n homogenous medium externally driven bA-, a
(1). Depending on the space dimension we obtained Monochromatic localized shaking source located between the

e thee scaling forms: -3, Fe—(sfa% JLIL; if  Pales 3., a menochiomatc and homogenus shang and
_ (252, —1 . . ; _ —C—, . -
d=2, IZ:C };’Sa K )L”IOg(Iﬂs/L)f an finally if d=1, erate effective forces on the plates without acting directly on
Fc~(msax™")lq . In agreement with the above exact calcu-them The main features of the mean forces induced by these
lations and with Fig. 5. three simple shaking are summarized in the table below and
Fluctuations of the shaking-induced forco conclude compared to their equilibrium thermal Casimir analog.
this section, we address briefly the question of the fluctua-

V. SUMMARY AND OUTLOOK

tions of the force. In order to asses their relative importanceshaking Amplitude Range Sign
with respect to the mean force value, we introduce the di

mensionless ratid-c/AF, where the mean-squared devia- A 77§ st repulsion
tion AF? is defined byAF?=(F(t)?)—FZ. WhereasF¢ is B 7> o, tunable
the result of the competition between the mean foriegs C 7> power law attraction
andF¢ of opposite signs, the forces’ fluctuations on the twoThermal kgT power law attraction

sides add up and F2=(AF~)2+ (AF~)2 with obvious no-

tations. Note that the noise’s four points correlation function

is a priori required to computéF. We make here one more Fijve points are worth highlighting.

assumption and consider tha(R,t) are Gaussian random (i) Although a shaking at a single frequency leads neces-
variables with correlations given by Eq4.3) and(14). This  sarily to short-range interactions, noisy shakings generate ef-
allows to fully characterize the shaking process and, consdective forces that decays algebraically with the interplate

guently, the variance of the shaking-induced force. For thalistance.

sake of clarity we present without additional details the scal- (ii) If the external shaking occurs only between the two

ing form of the mean over variance rafignoring logarith-  plates the resulting interaction is always repulsive. Con-

mic correctiong versely, when distributed on the whole sample the external
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shakers generate forces on both sides of the plates. The rabove table is the forces’ range. For shakings of the —A— and
sulting net force is attractive for spatially uncorrelated shak—B— type the range of the force becomes minj. In the

ing. On the contrary, with coherent shaking, interferencenoisy shaking case —C- the force decay is not algebraic
phenomena between the elastic medium distortions can leaghymore but exponential for interplate distances larger than
to attractive or repulsive interactions. &

(iii) The soft medium-plates coupling has been here mod- (v) Beyond the derivation of their average values, we
eled by Dirichlet boundary conditions. As in the equilibrium have also shown that the shaking-induced forces are in gen-
case our results are expected to hold for other static boundasral expected to be strongly fluctuating quantities, whatever
conditions representing strong interactions. In contrast théheir precise origin.
description of situations of weaker coupling and/or cases To conclude, let us recall that our description is clearly
where dynamic boundary conditions are required could yieldextremely simplified and of course is not supposed to model
to new phenomenology. any real system. Even within this simple framework the ex-

(iv) The generalization of our results to an elastic mediumtension of our result to many moving objects remains com-
characterized by an intrinsic relaxation scdlgsee the dis- plex. But, the analysis of simplified situations such as that
cussion above Eq(34)] can be done without much effort described here could certainly help understand ordering and
following blindly the procedures described in this paper. Thedynamic behavior of inclusions in out-of-equilibrium com-
only qualitative difference in the results summarized in theplex fluids.
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