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Effective interactions between inclusions in complex fluids driven out of equilibrium

Denis Bartolo,1 Armand Ajdari,1 and Jean-Baptiste Fournier1,2

1Laboratoire de Physico-Chimie The´orique, UMR CNRS 7083, ESPCI, 10 rue Vauquelin, F-75231 Paris Cedex 05, France
2Fédération de Recherche, FR CNRS 2438 ‘‘Matie`re et Syste`mes Complexes,’’ F-75231 Paris Cedex 05, France

~Received 14 January 2003; published 23 June 2003!

The concept of fluctuation-induced effective interactions is extended to systems driven out of equilibrium.
We compute the forces experienced by macroscopic objects immersed in a soft material driven by external
shaking sources. We show that, in contrast with equilibrium Casimir forces induced by thermal fluctuations,
their sign, range, and amplitude depend on specifics of the shaking and can thus be tuned. We also comment
on the dispersion of these shaking-induced forces, and discuss their potential application to phase ordering in
soft materials.
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I. INTRODUCTION

A prominent issue in soft condensed matter physics is
understanding of the equilibrium phase behavior of mes
copic particles immersed in complex fluids: colloidal susp
sions @1#, liquid droplets in liquid crystals@2#, inclusions
in lipid membranes@3#, charged particles in electrolyte
@4#, . . . . A standard and fruitful procedure to describe t
large scale properties of inclusions in a soft medium cons
in integrating out the numerous ‘‘solvent’’ degrees of fre
dom via ensemble averaging@1,5#. The interaction between
the embedded particles is then described by ‘‘effective
tentials.’’ The latter can modify the genuine interparticl
interaction ~Coulomb, van der Waals, . . . ) or give rise to
entirely new effects. For instance, in some~equilibrium!
cases, the external objects do not modify the ground s
energy of the medium but only alter its thermal-fluctuatio
spectrum. The resulting entropic effective interaction h
consequently an amplitude proportional to the thermal
ergy kBT and a range comparable to that of the correlatio
of the fluctuations of the medium@7,6#. Such fluctuation-
induced~i.e., entropic! interactions are commonly referred
as thermal Casimir interactions in analogy with their famo
quantum equivalent@8#.

More recently, many experimental studies have repor
the organization of particles embedded in fluids when
latter are driven out of equilibrium by the application
external fields@9–12#. Extensions of the concepts of ‘‘effec
tive potential’’ and ‘‘entropic forces’’ to out of equilibrium
situations have been scarce@12–14#. Indeed effective poten
tials cannot be simply derived from a free energy in an o
of-equilibrium context, and only the instantaneous force a
ing on the external objects for a given configuration of t
medium can be defined. The effective interactions betw
the host objects should then strongly depend on the dyna
ruling the temporal evolution of the medium~in contrast to
the equilibrium Casimir case!.

In this paper, we attempt to extend the paradigm of C
simir effective interactions to objects immersed in soft s
tems ‘‘shaken’’ by external energy sources that cannot ba
priori modeled by heat baths. We use a model, detailed
Sec. II, where both the medium and the objects are v
simple.~i! The hosting medium is described by a scalar f
1063-651X/2003/67~6!/061112~9!/$20.00 67 0611
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field f living in a d-dimensional space (d51,2,3): for in-
stance,f could represent the height profile of a fluid inte
face (d52) or a contact line (d51) @15#, or the angular
deviation of the director of a nematic liquid crystal (d53)
@16#. ~ii ! The external objects are two identical rigid paral
plates that enforce a zero field on their surfaces~Dirichlet
boundary conditions!. Among the numerous possible choic
for the shaking sources, we explore three different case
experimental relevance~cf. Fig. 1!: ~A! a localized mono-
chromatic shaking,~B! an uniform monochromatic shaking
~C! a spatially uncorrelated colored noise. All these shak
induce effective interactions between the plates, which
characterize in Sec. III by the corresponding average for
discussing their sign, amplitude and range. We comp
these features with those of the usual thermal Casimir eff
The detail of the calculations and a more thorough analy
of the shaking-induced interactions are gathered in Sec.
This more technical section also includes some comment
the time dependence and fluctuations of these shak

FIG. 1. Sketch of the three shaking processes discussed in
paper: ~A! pointlike monochromatic shaking source,~B! uniform
monochromatic shaking, and~C! spatially uncorrelated colored
noise.
©2003 The American Physical Society12-1



et
ibl

y

a
by

ns

d

nt
e
ac

e

e

ed
al

x-

the

ect

a
is

he
in-
gh

ed

by

all

a

ys-

e

nd

me

BARTOLO, AJDARI, AND FOURNIER PHYSICAL REVIEW E67, 061112 ~2003!
induced forces. Section V ends the paper with a synth
summary of our main results and an outlook on poss
applications.

II. MODEL AND NOTATIONS

A. Energetics and force on the plates

We consider two plates in a soft medium separated b
distanceL much shorter than their lateral extensionL i , as
depicted in Fig. 2. Their thickness plays no role in all th
follows and will be set to 0. The soft medium is modeled
a scalar fieldf associated with the elastic Hamiltonian

H5
k

2E ddRW @¹f~RW !#2, ~1!

with k the elastic modulus andRW 5(x,r ) wherex is the co-
ordinate normal to the plate, see Fig. 2.f is taken dimen-
sionless.

We restrict ourselves to strong plate-field interactio
modeled by Dirichlet boundary conditions~DBC! on the
plates:f(x50,r )5f(x5L,r )50.

We first focus our attention on the forceF. that the soft
medium exerts on the right-hand side of the plate locate
x50. For a given configuration of the elastic field,F. is
given by the integral overr of the stress tensor compone
Txx(r ) @20#. The componentsTi j of this stress tensor can b
obtained by the virtual displacement method taking into
count the DBC @6#. In the present geometry,Txx(r )
52 1

2 k@]xf(01,r )#2, so that

F.52
k

2E dr @]xf~01,r !#2. ~2!

Note that this force pushes the plate toward the negativx
direction whatever the field conformation.

The net forceF on the plate is the algebraic sum of th
contributions of the two sides:F[F.1F,. The forceF, is
given by a formula similar to Eq.~2!, so that

FIG. 2. Two parallel plates, perpendicular to thex axis, sepa-
rated by a distanceL shorter than their lateral extensionL i .
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F52
k

2E dr @]xf~01,r !#21
k

2E dr @]xf~02,r !#2. ~3!

B. Dynamics

For the sake of clarity all calculations are perform
within the simplest local and strongly dissipative dynamic
scheme: thef field evolves under the application of an e
ternal ‘‘shaking’’ sourceh as

g] tf52
dH
df

1h5k¹2f1h, ~4!

f~0,r ,t !5f~L,r ,t !50. ~5!

Hereg is a generalized friction coefficient.
A description of the dynamics of the plates is beyond

scope of this paper, and we assume that they are fixed.L is
thus a constant. After partial Fourier transform with resp
to t and r , Eqs.~4! and ~5! can be recast into

fv,q~x!5E
0

L

dx8Rv,q
. ~x,x8!hv,q~x8!, ~6!

where the response functionR . corresponds to the diffu-
sion kernel in the slab geometry with DBC and with
diffusion constantk/g. The Fourier transforms used in th
paper are defined byf q[*dr f (r )exp(iq•r ) and gv

[*dtg(t)exp(ivt).
A generalization of our results obtained with Eqs.~4! and

~5! to other slow dynamics that obey an equation of form~6!
with a different kernel will be commented on throughout t
text. This generalization is simple provided the dynamic l
ear response off relates spatial and temporal scales throu
an algebraic relationl v;v21/z, where l v is the spatial ex-
tension of the elastic distortion resulting from a localiz
periodic shaking of pulsationv, and z is the so-called dy-
namical exponent. The diffusive model described above
Eqs.~4! and ~5! indeed fits in this picture withz52 and

l v5@~g/k!v#21/2. ~7!

III. AVERAGE FORCES INDUCED BY THREE KINDS OF
SHAKING

To set a reference for further comparison, we first rec
the expression of the average thermal forceFCasimir on the
plate atx50 if the whole medium is thermally excited by
heat bath imposing a temperatureT @22#. The simplest deri-
vation consists in computing the total free energy of the s
tem for a given interplate distanceL, and taking its derivative
with respect toL. An alternative approach is to consider th
model Langevin dynamics for the field given by Eqs.~4! and
~5!, with h a thermal Gaussian white noise of zero mean a
of variance ^h(RW ,t)h(RW 8,t8)&52gkBTd(RW 2RW 8)d(t2t8).
Averaging over realizations of the noise leads to the sa
universal expression for the net thermal Casimir force@6#
2-2
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FCasimir5AdkBT
L i

d21

Ld
, ~8!

with Ad5(d21)G(d/2)z(d)/(4p)d/2. This universal mean
force describes a long range attraction that depends on
temperature of the heat bath but not on specific mate
properties such ask andg.

We now calculate the average forces generated by
three nonthermal shaking processes mentioned in the in
duction, with a fieldf that evolves according to Eqs.~4! and
~5!.

A. Average force induced by a localized monochromatic
shaking

We start with the simplest choice for the shaking in E
~4!, namely, a pointlike monochromatic shaker oscillating
a pulsationvs, located at an equal distanceL/2 from the two
plates:

h~RW ,t !5hsa
dcos~vst !d~x2L/2!d~r !, ~9!

The noise amplitude has been arbitrarily split into the pr
uct of a microscopic volumead, where the medium is
shaken, and a shaking amplitudehs that has the dimension o
an energy density.

Such a process could be, for example, the result of
forcing of a microscopic ‘‘active’’ particle located betwee
the two plates~e.g., a magnetic particle under the influen
of an external oscillating magnetic field!, in which casea is
typically fixed, whereashs andvs can be externally tuned.

The net forceF felt by the plate atx50 reduces to its
right hand side contributionF. since the outer medium re
mains undistorted@f(x,0)50#. Moreover, the geometry is
here totally symmetrical so that the force felt by the plate
x5L is 2F. DenotingFA

. the time averaged force for thi
process and anticipating on the detailed discussion of S
IV A, we use Eq.~23! to write

FA
.52

~hsa
d!2

k

1

Ld21
YAS 1

2
,

L

l vs
D . ~10!

Again l vs
5@(g/k)vs#

21/2 is the dynamical length associate

with the shaking pulsationvs. The adimensional function
YA(1/2,L/ l vs

) is plotted in Fig. 3, and its general expressi
~including the shaker position dependence! is given below in
Eq. ~23!.

Two different limit regimes can be identified: IfL/ l vs

!1, the shaking period is much larger than the relaxation
any interplate field excitation, so that the elastic deform
tions generated atx5L/2 propagate along thex axis up to the
plate surfaces. In this quasistatic limit, the time averag
forceFA

. felt by the plate atx50 is comparable to the elasti
force on the plates under the application of a constant s
‘‘effective’’ perturbation 1/A2hsa

dd(x2L/2)d(r ). The lat-
ter induces static deformations of lateral extensionL on the
plate. Thus,FA

. scales ashs
2a2d/(kLd21), independent of
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the shaking period. In contrast, the dynamic length is mu
smaller than the plate-shaker distance ifL/ l vs

@1. The elas-
tic deformations are exponentially screened before reach
the plate surfaces. Therefore, the force amplitude decays
ponentially, as shown in Fig. 3.

In summary, a localized periodic shaking induces an
fective interplate interaction. AlthoughFCasimir is universal
and leads to an attraction between the two plates, the in
action obtained here is repulsive and does depend both
the elastic modulus of the surrounding‘‘fluid’’ and on its d
namics~throughl vs

). Finally, both the range and the ampl
tude of the present shaking-induced force can be extern
tuned by varying the pulsationvs and the amplitudehs of
the shaking. The dependence of the force on the shaker
sition as well as its fluctuations will be discussed in Sec.

B. Average force induced by a uniform monochromatic
shaking

We now suppose that the elastic medium is everywh
periodically and homogeneously shaken:

h~RW ,t !5hscos~vst !. ~11!

Possible experimental realizations include the homogene
and periodic shaking of a metallic elastic line using a ma
netic field @17# or the driving of an interface between tw
dielectric liquids using ac electric fields@18#. One may also
use flexoelectric effects in liquid crystal to generate suc
shaking process@19#. By symmetry the two plates feel oppo
site instantaneous forces. The exact expression for the
averaged forceFB on thex50 plate is computed in Sec. IV

FB5
hs

2L i
d21

k
l vs

2 YBS L

l vs
D . ~12!

The dimensionless quantityYB , see Eq.~30!, is plotted in
Fig. 4: it is nonmonotonic and changes sign periodica
Given the plates geometry and the shaking translational

FIG. 3. Localized monochromatic shaking. Log-linear plot of
the scaling functionYA(1/2,L/ l vs

) againstL/ l vs
5(g/k)1/2vs

1/2L,
for various space dimensions:d53 full line, d52 dashed line, and
d51 dotted line.
2-3
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variance, the net normal stressFB /L i
d21 depends neither on

the plates lateral extensionL i nor on the dimensiond. The
fast and slow shaking asymptotics can thus be qualitativ
inferred from dimensional analysis. If the medium is slow
shaken (L/ l v!1), the net force amplitude diverges asl vs

2

;1/vs. First, notice that a constant uniform sourcehs be-
tween the plates induces an homogenous normal stress o
inner side of the plate (x501) that scales necessarily a
FB

./L i
d21;hs

2k21L2. Second, on the left-hand side of th
plate (x,0), l vs

is the only length scale available to co

struct the normal stressFB
,/L i

d21;hs
2k21l vs

2 . In this slow

shaking regime this latter contribution dominates, so thatYB
plateaus to a finite value. Turning now to theL/ l v@1 limit,
if the interplate distance goes to infinity, the two sides of
plate face identical semi-infinite media. Consequently, th
are pushed in opposite directions with the same amplit
and thus feel on average no net force. So, in this limitL/ l v

@1 that also corresponds to fast shaking at fixedL, FB de-
cays to zero, as observed in Fig. 4.

Returning to the most remarkable features, Fig. 4 and
~12! show that the fluctuations of a uniformally shaken m
dium induce effective interplate forces that strongly diff
from FCasimir. They are indeed completely tunable unlik
their equilibrium analog. Their sign, amplitude, and ran
can all be controlled externally by varying the shaking per
and amplitude.

C. Average force induced by a stochastic shaking:
colored noise

Finally the case of stochastic shaking sources is con
ered. As mentioned above, ifh is the white Langevin noise
modeling the coupling to a heat bath, the resulting field fl
tuations induce thermal Casimir interactions between
plates. Any other noisy shaking drives the system out
equilibrium. Numerous examples of elastic materials sha
by ‘‘active’’ stochastic processes are provided by biologi
systems, e.g., active membranes@11#, actin-myosin gels@21#,
etc. Without attempting to describe accurately the speci
of the noise in a given system, we focus here on the sim
case of a spatially uncorrelated colored noise of zero me

FIG. 4. Uniform monochromatic shaking. Linear plot of the
scaling functionYB(L/ l vs

) as a function ofL/ l vs
5(g/k)1/2vs

1/2L.
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seeking for the influence of its color on the interplate for
generated. We describe the fluctuations of this noise by

^h~RW ,t !h~RW 8,t8!&5hs
2adS~ t2t8!d~RW 2RW 8!, ~13!

where the correlationS(t) is defined by its Fourier transform
Sv , also referred to as the noise power spectrum:

Sv5
Vs

Vs
21v2

. ~14!

In Eq. ~13! a is a microscopic distance chosen so that
mean squared noise satisfies^h2(RW ,t)&5hs

2 . Again hs has
the dimension of an energy density. The white noise lim
corresponds toVs→`, with hs

2adVs
21 kept constant.

The mean net forceFC on thex50 plate is exactly com-
puted in Sec. IV C:

FC5
hs

2ad

k

L i
d21

Ld22
YCS L

l Vs
D . ~15!

The dimensionless ratioYC/Ad is plotted in Fig. 5, using Eq.
~33!. We recall thatAd measures the amplitude of the therm
Casimir force@Ad5(d21)G(d/2)z(d)/(4p)d/2#.

Postponing a more involved discussion to the followi
section, we emphasize here three points. First, the colo
the noise has no influence on the sign of the force: the
plates attract each other whateverVs and hs. Second,YC
decreases monotonically withL/ l Vs

, in other words the

larger the noise correlation timeVs
21 , the stronger the force

felt by the two plates. Third, Fig. 5 indicates thatYC(u)/Ad
decays as 1/(2u2) when u@1. This implies that the attrac
tion is long ranged and decays only algebraically with t
interplate distance. A connection with the Casimir result a
pears in this regime: if one setshs

2adVs
2152gkBT, then in

the white noise limitVs→`, FC converges as expected t
FCasimir5AdkBTLi

d21/Ld.

FIG. 5. Colored noise. Log-log plot of the ratioYC(L/ l Vs
)/Ad

vs L/ l Vs
5(g/k)1/2Vs

1/2L. The full line corresponds tod53, the
dashed line corresponds tod52, and the dotted line corresponds
d51.
2-4
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To conclude, we have shown that Casimir-like attractio
can be induced by colored noisy shaking. These attract
decay algebraically at long distance as in the thermal c
and contrary to the two former monochromatic cases. Th
amplitudes depend explicitly on the material properties a
their scaling on the noise color.

IV. SHAKING-INDUCED FORCES: DETAILED ANALYSIS

In this section we provide a more detailed analysis of
interactions induced by the three kinds of shakings: in ad
tion to the explicit derivation of the average of the corr
sponding forces, we also comment on their temporal fluct
tions.

We start with the derivation of the tool that will allow u
to compute the forces on thex50 plate in all situations,
namely, the linear response function]xR of the field’s gra-
dient at the surface of the plate to a pointlike shaker in
medium @by definition, the kernelR is the solution of the
dynamic Eqs. ~4! and ~5!, with h(RW ,t)5d(RW 2RW 8)d(t
2t8)]. We compute this quantity using an image metho
which conveys an intuitive picture@23#: as in electrostatics
these equations can be solved replacing the constrain
boundaries~5! by the addition of anad hocdistribution of
image sources outside the integration domain.

We consider first a shaking source located in the interp
region 0,x8,L and compute the response]xR . on thex
501 side of the plate. In the present slab geometry,
images are the mirror images of the original source thro
virtual reflecting planes located atx5nL, as depicted in Fig.
6. Consequently, the responseRv,q

. (x,x8) can be expresse
as an infinite sum over all the image contributions:

Rv,q
. ~x,x8!5 (

nPZ
Rv,q~2nL1x82x!

2 (
nPZ

Rv,q~2nL2x82x!, ~16!

whereR the diffusion kernel in an infinite domain:

Rv,q~x,x8!5
exp~2Aq21 i l v

22ux2x8u!

2kAq21 i l v
22

, ~17!

with A21[ i . Performing sum~16! and taking the derivative
with respect tox yields

FIG. 6. Distribution of the image sources for the two plat
geometry and Dirichlet boundary conditions. The filled circle is t
original source and the dashed circles are its mirror images.
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]xRv,q
. ~0,x8!5

sinh@A~qL!21 i ~L/ l v!2~12x8/L !#

k sinh@A~qL!21 i ~L/ l v!2#
.

~18!

A simpler calculation can be carried out if the source is
the negativex region (x8,0). In this case the only image
source is symmetric in thex50 plane of the original source
so that the response of the field gradient on thex502 side of
the plate is described by

]xRv,q
, ~0,x8!5

e2A(qx8)21 i (x8/ l v)2

k
. ~19!

A. Localized periodic shaking

If the only driving is a single monochromatic shaker l
cated between the plates atx5xs,

h5hsa
dd~x2xs!d~r !cos~vst !, ~20!

then the general expression of the net force acting on thx
50 plate is simply obtained from the definition of the r
sponse function]xR .:

F~ t !5
2k~hsa

d!2

4 F E
q
u]xRvs ,q

. ~0,xs!u2G @11cos~2 vst !#,

~21!

with the short-hand notation*q[*dq/(2p)d21 @24#.
There is obviously no force on the left side of the plate,

that using~18! we obtain the exact expression for the insta
taneous force on this plate. Its time averageFA

. describes a
repulsion between the plates:

FA
.~xs,vs!52

~hsa
d!2

kLd21
YAS xs

L
,

L

l vs
D ~22!

with

YA~u,v !5
1

4Eq
Usinh@Aq21 iv2 ~12u!#

sinh~Aq21 iv2!
U2

. ~23!

We now give a closer look at the asymptotics correspond
to the fast and slow shaking limits.

Quasistatic shaking.We first consider the regime wher
the driving period is much larger than the relaxation time
any interplate field deformation, i.e., the dynamical length
much larger than the interplate distance (L/ l vs

!1).

The limiting valueYA(u,0) can be exactly computed b
integrating over the in-planeq modes before summing up a
the contributions from all images in Eqs.~16! and ~21!.
If d53 YA(u,0)5]u@p(12u)cot(pu)22Gu12(12u)c(u)#/
(32p), with c the Eulerc function, andG the Euler constant
@25#, if d52, YA(u,0)5@11p(12u)cot(pu)#/(8p), and
if d51, YA(u,0)5(12u)2/4. The scaling function
YA(xs/L,0) is plotted in Fig. 7~log-log plot!. The fast decay
for values ofxs/L larger than1

2 witnesses that the elasti
distortions are essentially occurring in theL/2,x,L region.
2-5
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Conversely, a shaker close tox50 induces strong variation
of the elastic field in the vicinity of the plate, leading to a
algebraic divergence of the force whenxs/L→0 ~if d.1).

The force dependence on the shaker position can als
qualitatively understood, thanks to an electrostatic analo
In the present quasistatic limit, the kernelR vs

. corresponds
to the inverse of the Laplace operator~with DBC on the
plates!. Consequently,f plays the role of an electrostati
potential, the plates mimic a grounded planar capacita
and the shaking source a point-like particle bearing a cha
hsa

d. The force on the plate is then analogous to the e
trostatic force produced by a pointlike charge@26#. From the
image expansion~16! we know that this force is identical to
that produced on a virtual plane atx50 by an infinite num-
ber of (1hsa

d) charges located atx52nL1xs and of
(2hsa

d) charges atx52nL2xs. Hence we have the fol
lowing conclusions.

~1! If xs,L ~cf. Fig. 6!: the electric field on the plate
surface is dominated by the image charges atuxu5xs, so
F;2(hsa

d)2/(kxs
d21). Higher-order reflections produc

image sources that form dipoles viewed fromx50. Their
subdominant contributions to the electrostatic force actu
reduce the above estimation. This implies that the further
second plate, the bigger the force produced by a sin
shaker.

~2! If xs;L ~cf. Fig. 6!: the image charges form dipole
located atx5(2n11)L. The electric field on the plate i
dominated by the influence of the dipole located atuxu5L
~the closest from thex50 plate!. The force therefore scale
FA

.;2(hsa
d)2(12xs/L)2/(kLd21).

Fast shaking.If L/ l vs
!1, the electrostatic analogy onl

provides a partial description of the force generation. In t
case, only the first reflexion contribute substantially to
image expansion~16! as if the second plate~at x5L) was
pushed to infinity. The only remaining length scales arexs
and l vs

, and the average force can be approximated by

FA
.;2

~hsa
d!2

kxs
d21

ỸA~xs/ l vs
!, ~24!

FIG. 7. Log-log plot of the scaling functionYA(xs/L,0) vs
xs/L. This corresponds to caseA in the quasistatic limitL/ l vs

!1. The full line corresponds tod53, the dashed one correspon
to d52, and the dotted line corresponds tod51.
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with ỸA(u)5 1
4 *quexp(2Aq21 iu2)u2. This dimensionless

screening factor is plotted in Fig. 8. If the dynamic lengthl vs

is larger than the distance separating the shaking source
the plate,xs/ l vs

@1, the amplitude of the elastic field exc
tations are exponentially reduced before reaching the pla
surface. More precisely, in this regime,

ỸA~u!;~u!(d21)/2exp~2A2u!. ~25!

Oppositely, ỸA(xs/ l vs
) has a nonvanishing finite limit if

xs/ l vs
goes to zero.FA

. then corresponds to the electrosta
force acting on a conducting plate facing a single ‘‘effectiv
chargehsa

d located at (x5xs,r50), so that, as in the quas
static case above,FA

.}2(hsa
d)2/(kxs

d21).
Fluctuations of the shaking-induced force.Beyond the

definition and the characterization of the average interp
interaction, it is crucial to notice that the present shakin
induced force is a time varying quantity. Rewriting Eq.~21!
asF(t)5FA

.@11cos(2vst)#, it is obvious that the force ex
perienced by the immersed plates cannot bea priori reduced
to its sole average value. As a matter of fact the fluctuati
of the instantaneous force are comparable to its average
plitude.

B. Homogenous monochromatic shaking

We now consider that the soft medium is uniforma
shaken byh(RW ,t)5hscos(vst). h is the superposition of in-
phase shakers of the –A– type uniformally distributed in
space. All the elementary shakers produce periodic ela
deformations that ‘‘interfere’’ and give rise to the instant
neous forcesF.(t) @respectivelyF,(t)] at x501 ~respec-
tively x502) obtained from Eqs.~2! and ~6!:

F.~ t !52
k

4
L i

d21U E
0

L

]xR vs ,0
. ~0,x8!dx8U2

3@11cos~2vst1u.!#, ~26!

FIG. 8. Log-linear plot of the scaling functionỸA . The full line
corresponds tod53, the dashed line tod52, and the dotted line to
d51.
2-6
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with u.52 arg@*0
L]xR vs,0

. (0,x8)dx8#, and

F,~ t !5
k

4
L i

d21U E
0

`

]xR vs ,0
. ~0,x8!dx8U2

3@11cos~2vst1u,!#, ~27!

with u,52 arg@*0
`]xR vs,0

, (0,x8)dx8#. At every instant these

two forces compete. They push the plate in opposite dir
tions to give rise to the net forceF(t). The latter is exactly
computed using Eqs.~3!, ~18!, ~19!, ~26!, and~27!, and after
some elementary algebra@24#:

F~ t !5FBF11
cos~2vst !

cos@L/~A2l vs
!#G . ~28!

The averageFB is given by

FB5
hs

2L i
d21

k
l vs

2 YBS L

l vs
D , ~29!

YB~u!5
1

2

cos~u/A2!

cos~u/A2!1cosh~u/A2!
. ~30!

The functionYB is plotted in Sec. III B, see Fig. 4, where i
fast and slow asymptotics are qualitatively studied.

Mean force tunability.The tunability of the presen
shaking-induced force is clearly revealed by Eqs.~29! and
~30!. Precisely for fixedL ~i! the shaking pulsationvs sets
the sign ofFB to sign@cos$L/(A2l vs

)#%, and its range to; l vs

@via the cosh term in Eq.~29!#, ~ii ! thenhs allows to adjust
the mean force amplitude arbitrarily. This second assertio
actually true only ifLÞp/A2(2n11)l vs

, with n integer. In
such cases the plates experience no mean net force.

Fluctuations of the shaking-induced force.Equation~28!
indicates actually thatF(t) ‘‘fluctuates’’ periodically around
FB with a pulsation 2vs. Moreover, the amplitude of the
2vs components of the force is 1/cos@L/(lvs

A2)# times larger

than its mean valueFB , whatever the shaking parametersvs
andhs.

Shaking-induced organization.The two preceeding com
ments strongly suggest that the homogenous shaking ma
used to dynamically induce spacial ‘‘localization’’ of th
plates. As a matter of fact, when mesoscopic objects are
mersed in a soft medium, their intrinsic dynamics~ignored in
the present work! necessarily filters out high frequency e
fects of external forcing. If their response time is much larg
than 1/(2vs), these ‘‘slow’’ moving objects only respond t
the stationary componentFB of the shaking-induced force
The corresponding steady-state interplate distance in
present simple geometry is then controllable by tuningvs.

C. Colored noisy shaking

The medium surrounding the plates is now supposed to
driven by stochastic shaking sources with zero mean
mean-squared fluctuations given by Eq.~13!. The noise av-
06111
c-
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-
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e
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eraged net forceFC experienced by the plate atx50 is the
sum of the mean values of the two independent forcesF.

andF,. Using Eqs.~12!,~18!,~20! this force is written as

FC5
2L i

d21

ad E
v
SvF E

0

L

@FA
.~x,v!1FA

,~2x,v!#dx

1E
L

`

FA
,~2x,v!dxG . ~31!

Exact results. For a Lorentzian power spectrum, see E
~14!, the integration over frequency and position of all t
elementary contributionsFA(x,v) in Eq. ~31! yields

FC5
hs

2adL i
d21

kLd22
YCS L

l Vs
D , ~32!

YC~u!5
1

4u2Eq
q~cothq21!

2
1

4u2Eq
Aq21u2@coth~Aq21u2!21#. ~33!

The scaling functionYC is plotted in Fig. 5. To achieve
the exact computation ofFC, the integral over the in-plate
q modes in Eq.~33! is performed. After some algebr
we obtain, if d51, YC5$12u@coth(u)21#%/u2, if
d53, YC5@3z(3)2p226u22ulog(12e2u)13Li2(e2u)#/
(48pu2), where z is the Riemannz function and Li2 the
dilogarithm function, Li2(x)5(k51

` xk/k2. Finally for the
d52 caseYC52(n@K0(2nu)1K2(2nu)#, whereKn is the
nth K-Bessel function@25#.

Notice that this last calculation can actually be bypass
if one already knows the thermal Casimir force the l
plate would feel if the soft medium had a finite correlatio
length j, precisely if the elastic Hamiltonian wer
H5(k/2)*@¹W f(RW )#21@f(RW )/j#2ddRW . Denoting this force
F̃Casimir(L/j), we can show that Eqs.~32! and ~33! can be
recast into@27#

FC5
hs

2adVs
21

2gkBT F F̃Casimir~0!2F̃CasimirS L

l Vs
D G , ~34!

where F̃Casimir(0), of course, corresponds to the Casim
force the plate experiences in a scale-free fluctuating
dium, cf. Eq.~8!.

Qualitative approach. Equation ~31! shows clearly that
FC is the result of the incoherent sum over frequencies
positions of the forces produced by localized shakers of
–A– type. Note that the sum over the shaking frequencie
weighted by the noise power spectrumSv . This decomposi-
tion is now used to justify first the sign of the mean forc
then the algebraic decays of the mean force as observe
Eq. ~32! and Fig. 5.

Only the elementary monochromatic shakers localized
distancesuxu,L on the left-hand side of the plate have
2-7
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challenger in the 0,x,L inner region. Referring to the dis
cussion in Sec. IV A, we know thatFA

,.0 and that
uFA

.(x,v)u,uFA
,(2x,v)u. Moreover, Sv is necessarily a

positive quantity for all frequencies. It then turns out that t
net mean force is positive, for any choice ofSv , the
two objects attract each other. Besides,FA

.(x,v)
;2FA

,(2x,v) for shaker located atx,L/2. This important
property leads to the cancellation of the short-distance di
gences in the first term of Eq.~31!. Finally, uFA

.(x,v)u
!uFA

,(2x,v)u if uxu.L/2, so that Eq.~31! can be approxi-
mated byFC;2L i

d21a2d*vSv*L/2
` FA

,(2x,v)dx.
To sum up, the elastic field deformations produced by

–A– type shakers located atx,2L/2 dominate the mean
net forceFC.

Without refering to any specific choice forSv , the noise
power spectrum is here characterized only by its widthVs,
see, e.g., Eq.~13!. Thus, going to the (x,l v) variables and
definingL* [max(L,lVs

) we easily deduce

FC;
hs

2adVs
21L i

d21

g E
L*

` dlv

l v
3 E

L

l v dx

xd21
, ~35!

sinceFA
,(x,v) is exponentially weak ifx. l v and scales as

1/xd21 if x, l v , cf. Fig. 8.
We can now integrate~35! and distinguish the two case
~i! L/ l Vs

@1. In this wide noise spectrum limitFC

;(hs
2adVs

21/g)L i
d21/Ld, the thermal Casimir force scalin

is obtained as anticipated in Sec. III.
~ii ! L/ l Vs

!1. In this case the noise correlation tim

;Vs
21 is larger than the field relaxation over distanc

smaller thanL. The number of elementary shakers contrib
ing to the force is substantially increased compared
~1!. Depending on the space dimensiond, we obtained
the three scaling forms: ifd53, FC;(hs

2a3k21)L i
2/L; if

d52, FC;(hs
2a2k21)L ilog(lVs

/L); an finally if d51,

FC;(hs
2ak21) l Vs

. In agreement with the above exact calc
lations and with Fig. 5.

Fluctuations of the shaking-induced force.To conclude
this section, we address briefly the question of the fluct
tions of the force. In order to asses their relative importa
with respect to the mean force value, we introduce the
mensionless ratioFC/DF, where the mean-squared devi
tion DF2 is defined byDF2[^F(t)2&2FC

2 . WhereasFC is
the result of the competition between the mean forcesFC

.

andFC
, of opposite signs, the forces’ fluctuations on the tw

sides add up andDF25(DF.)21(DF,)2 with obvious no-
tations. Note that the noise’s four points correlation funct
is a priori required to computeDF. We make here one mor
assumption and consider thath(RW ,t) are Gaussian random
variables with correlations given by Eqs.~13! and~14!. This
allows to fully characterize the shaking process and, con
quently, the variance of the shaking-induced force. For
sake of clarity we present without additional details the sc
ing form of the mean over variance ratio~ignoring logarith-
mic corrections!:
06111
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FC

DF
;S L i

L D (d21)/25 S L

l Vs
D (32d)/2

if L/ l Vs
!1

S l Vs

L
D (d11)/2

if L/ l Vs
@1,

~36!

we have also assumedd.1, since the one-dimensional cas
deserve a more careful analysis as in the equilibrium con
more carefully studied in Ref.@27#. The above expression
show that the present shaking-induced force cannot bea pri-
ori reduced to its sole valueFC. Indeed, depending on th
geometrical aspect ratioL i /L and on the noise correlatio
time Vs

21 the variance of the force can dominate its me
value by orders of magnitude.

D. Toward more complex dynamics

To what extent do the results presented above apply
systems evolving according to more complex dynamics?
noticeable that only the explicit form of the scaling functio
YX requires a precise description of the field dynamics. C
versely, all the qualitative analysis as well as the asympt
expressions for the various forces involve only the definit
of the dynamical lengthl v . We thus expect that they shoul
be extendable to any other dynamic scheme relating alge
ically the spatial and the temporal relaxation scale.

V. SUMMARY AND OUTLOOK

To summarize, a simple model has allowed us to sh
that the concept of fluctuation-induced interactions can
extended to complex fluids driven to out of equilibrium. O
main result concerns identical platelike inclusions immers
in an homogenous medium externally driven by–A–, a
monochromatic localized shaking source located between
plates,–B–, a monochromatic and homogenous shaking
–C–, a noisy colored shaking. These external processes
erate effective forces on the plates without acting directly
them. The main features of the mean forces induced by th
three simple shaking are summarized in the table below
compared to their equilibrium thermal Casimir analog.

Shaking Amplitude Range Sign

A hs
2 l vs

repulsion
B hs

2 l vs
tunable

C hs
2 power law attraction

Thermal kBT power law attraction

Five points are worth highlighting.
~i! Although a shaking at a single frequency leads nec

sarily to short-range interactions, noisy shakings generate
fective forces that decays algebraically with the interpl
distance.

~ii ! If the external shaking occurs only between the tw
plates the resulting interaction is always repulsive. Co
versely, when distributed on the whole sample the exter
2-8
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shakers generate forces on both sides of the plates. Th
sulting net force is attractive for spatially uncorrelated sh
ing. On the contrary, with coherent shaking, interferen
phenomena between the elastic medium distortions can
to attractive or repulsive interactions.

~iii ! The soft medium-plates coupling has been here m
eled by Dirichlet boundary conditions. As in the equilibriu
case our results are expected to hold for other static boun
conditions representing strong interactions. In contrast
description of situations of weaker coupling and/or ca
where dynamic boundary conditions are required could y
to new phenomenology.

~iv! The generalization of our results to an elastic medi
characterized by an intrinsic relaxation scalej @see the dis-
cussion above Eq.~34!# can be done without much effor
following blindly the procedures described in this paper. T
only qualitative difference in the results summarized in
-

ce

r,

t

06111
re-
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e
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-

ry
e
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e
e

above table is the forces’ range. For shakings of the –A–
–B– type the range of the force becomes min(j,lv). In the
noisy shaking case –C– the force decay is not algeb
anymore but exponential for interplate distances larger t
j.

~v! Beyond the derivation of their average values, w
have also shown that the shaking-induced forces are in g
eral expected to be strongly fluctuating quantities, whate
their precise origin.

To conclude, let us recall that our description is clea
extremely simplified and of course is not supposed to mo
any real system. Even within this simple framework the e
tension of our result to many moving objects remains co
plex. But, the analysis of simplified situations such as t
described here could certainly help understand ordering
dynamic behavior of inclusions in out-of-equilibrium com
plex fluids.
ys.
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